miRCURY LNA™ microRNA Array Kit
5th generation - human, mouse & rat

Instruction manual v1.2
for product # 208300-A, 208301-A, 208302-A,
208320-A, 208321-A, 208322-A
August 2010
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Summary</td>
<td>5</td>
</tr>
<tr>
<td>miRCURY LNA™ microRNA Array content</td>
<td>5</td>
</tr>
<tr>
<td>Additional required material</td>
<td>5</td>
</tr>
<tr>
<td>Product description</td>
<td>6</td>
</tr>
<tr>
<td>Control probes</td>
<td>7</td>
</tr>
<tr>
<td>Spike-in kit</td>
<td>8</td>
</tr>
<tr>
<td>miRCURY LNA™ microRNA Array layout</td>
<td>10</td>
</tr>
<tr>
<td>Storage</td>
<td>11</td>
</tr>
<tr>
<td>Related products</td>
<td>12</td>
</tr>
<tr>
<td>Single or dual color</td>
<td>15</td>
</tr>
<tr>
<td>Labeling Protocol (product # 208030-A, 208031-A, 208032-A)</td>
<td>17</td>
</tr>
<tr>
<td>Protocol & Notes</td>
<td>19</td>
</tr>
<tr>
<td>Hybridization Protocol</td>
<td>21</td>
</tr>
<tr>
<td>Hybridization and washing using Tecan HS Pro™ hybridization stations</td>
<td>21</td>
</tr>
<tr>
<td>Hybridization and washing using an Agilent hybridization SureHyb</td>
<td>24</td>
</tr>
<tr>
<td>chamber kit and gasket slide kit.</td>
<td>24</td>
</tr>
<tr>
<td>Hybridization and washing using MAUI® 4-Bay</td>
<td>28</td>
</tr>
<tr>
<td>or 12-Bay hybridization stations.</td>
<td>28</td>
</tr>
<tr>
<td>Recommendations for Experimental Set-up and Data Handling</td>
<td>35</td>
</tr>
<tr>
<td>Software and Databases</td>
<td>39</td>
</tr>
</tbody>
</table>

GenePix® Array List (GAL) files can be found at www.exiqon.com/Gal-downloads
Tips and Trouble Shooting ... 44
 Experimental procedure .. 44
 Preparation of RNA sample ... 44
 Black spots ... 45
 Solid particles ... 45
 Flushing the hybridization chamber 45
 Dry slides ... 46
 No signals ... 46
 High signals ... 46
 High background .. 46
 Concentration and purification of the labeling reaction 47
 Spike-in miRNA kit v2 signal distribution 48
 Use of Spike-in microRNAs .. 49
 Scanner settings ... 49
 Spike-in kit miRNA (Product # 208040) microRNA signal distribution .. 50
 Criteria for a good array run using spike-in microRNAs [product # 208040] ... 51
References ... 52

GenePix® Array List (GAL) files can be found at
www.exiqon.com/Gal-downloads
Literature citations:
Please refer to miRCURY LNA™ microRNA Array when describing a procedure for publication using this product.

Patents and Trademarks
Exiqon, LNA™, Hy3, Hy5, miRPlus and miRCURY™ are registered trademarks of Exiqon A/S, Vedbaek, Denmark. Locked Nucleic Acids (LNA™) are covered by patents and patent applications owned by Exiqon A/S. ImaGene® and Nexus Expression™ are registered trademarks of BioDiscovery, Inc. All other trademarks are the property of their respective owners.

Disclaimer
Products are for research use only and not for diagnostic or therapeutic use. The products may be used only for the buyer’s internal research purposes and not for commercial use. The buyer may not resell products in their original or any modified form. The purchase of products does not include or carry an implied right or license for the buyer to use such products in the provision of services to third parties and a license must be obtained directly from Exiqon A/S for such use.
This product and its use are covered by one or more of the following patents owned by Oxford Gene Technology Limited or Oxford Gene Technology IP Limited: US 6,054,270, US 5,700,637, EP 0,373,203; Jap. 3,393, 528 and 3,386,391 and pending patents. The purchaser is licensed to practice methods and processes covered by these patents using this product for its own internal research purposes only but may not: transfer data derived from the use of this product to third parties for value; use this product in the provision of services to third parties for value; use this product to make, have made, create or contribute to the creation of stand alone expression database products for license, sale or other transfer to a third party for value; or use this product for the identification of antisense reagents or the empirical design of probes or sets of probes for using or making nucleic acid arrays. The products are for research use only and not for diagnostic or therapeutic use. Specifications in this document are subject to change without notice.

© Copyright 2010 Exiqon. All rights reserved
Product Summary

miRCURY LNA™ microRNA Array content

Microarray slides
miRCURY LNA™ microRNA Arrays consist of control probes, and approximately 1891 capture probes, complementary to human, mouse, rat, and their related viral sequences from the v.14.0 release of miRBase. Arrays also contain a number of proprietary human miRPlus™ sequences not yet in miRBase.

Hybridization buffer (product # 208022)
Products with 3, 6 and 24 slides: 1 bottle x 5 mL

20x Salt buffer (product # 208023)
Products with 3 and 6 slides: 1 bottle x 125 mL
Products with 24 slides: 2 bottles x 125 mL

10% Detergent solution (product # 208024)
Products with 3 and 6 slides: 1 bottle x 15 mL
Products with 24 slides: 2 bottles x 15 mL

Spike-in microRNA kit v2 (product# 208041)
52 synthetic 5'-phosphorylated microRNAs, dried-down, 2x 24 reactions

Additional required material

miRCURY LNA™ microRNA Power Labeling Kit
Fluorescent labeling of microRNAs from total RNA samples ready for hybridization on arrays (product # 208030-A, 208031-A, 208032-A).

For manual hybridization
Microarray Hybridization Chamber - SureHyb (Agilent product# G2534A)
Hybridization Gasket Slide Kit (Agilent product# G2534-60003)
Hybridization oven with rotation.
Glass staining jar/dish or equivalent.
Product description

Tm-normalized capture probes
The miRCURY LNA™ microRNA Array slides contain capture probes complementary to mature microRNAs registered in miRBase. The capture probes are Locked Nucleic Acid (LNA™) enhanced oligonucleotides. By varying the LNA™ content and length, the capture probes are *Tm*-normalized to hybridise optimally under the conditions described in this protocol.

Coverage of probe set
The slides contain capture probes for all microRNAs in human, mouse, rat and their related viruses as annotated in miRBase Release 14.0. Please go to www.exiqon.com/array to see the coverage in respect to latest version of miRBase. In addition, a number of capture probes are available for detection of microRNAs not included in miRBase. These mirPlus™ probes give researchers access to information unavailable elsewhere. Please go to our online microRNA resource at www.exiqon.com/gal-downloads to:
- Download species-specific GenePix® Array Lists (GAL) files, consistent with the latest updates to miRBase. Please note the lot# on the array slide box and on the slide pouch. This number is needed to identify the GAL file.

Control capture probes
A number of control capture probes are included in the probe set.
- Spike-in control probes to ensure optimal labeling and hybridization.
- Negative control capture probes.
- Capture probes complementary to small nuclear RNAs.
Please see table on next page for details.
Control probes

<table>
<thead>
<tr>
<th>Probe ID</th>
<th>Positive controls</th>
<th>Aliases</th>
<th>Validated in these organisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>46202</td>
<td>5S_rRNA</td>
<td>-</td>
<td>hsa</td>
</tr>
<tr>
<td>145659</td>
<td>RNU1</td>
<td>U1; HSD1; RNU1; U1A1; HU1-1; RNU1A; RNU1A3; RNU1G4; Rnu1a1</td>
<td>hsa, mmu</td>
</tr>
<tr>
<td>145657</td>
<td>RNU5</td>
<td>U5a; Rnu5a</td>
<td>hsa, mmu</td>
</tr>
<tr>
<td>11278</td>
<td>RNU6-1</td>
<td>U6; RNU6; RNU6A</td>
<td>hsa, mmu, rno</td>
</tr>
<tr>
<td>11279</td>
<td>RNU6-1/RNU6-2</td>
<td>U6; RNU6; RNU6A / U6; RNU6B</td>
<td>hsa, mmu, rno</td>
</tr>
<tr>
<td>19011</td>
<td>SNORD10</td>
<td>mgU6-77</td>
<td>hsa</td>
</tr>
<tr>
<td>145661</td>
<td>SNORD110</td>
<td>HBII-55</td>
<td>mmu</td>
</tr>
<tr>
<td>19005</td>
<td>SNORD118</td>
<td>U8</td>
<td>hsa</td>
</tr>
<tr>
<td>19060</td>
<td>SNORD12</td>
<td>HBII-99</td>
<td>hsa</td>
</tr>
<tr>
<td>19063</td>
<td>SNORD13</td>
<td>U13</td>
<td>hsa</td>
</tr>
<tr>
<td>19013</td>
<td>SNORD14B</td>
<td>U14; U14B; RNU14B</td>
<td>hsa</td>
</tr>
<tr>
<td>19007</td>
<td>SNORD15A</td>
<td>U15A; RNU15A</td>
<td>hsa</td>
</tr>
<tr>
<td>19008</td>
<td>SNORD2</td>
<td>R39B; SNR39B</td>
<td>hsa</td>
</tr>
<tr>
<td>19007</td>
<td>SNORD3@</td>
<td>U3; U3A; U3B</td>
<td>hsa</td>
</tr>
<tr>
<td>46204</td>
<td>SNORD38B</td>
<td>U38B; RNU38B</td>
<td>hsa</td>
</tr>
<tr>
<td>46206</td>
<td>SNORD44</td>
<td>U44; RNU44</td>
<td>hsa</td>
</tr>
<tr>
<td>46205</td>
<td>SNORD48</td>
<td>U48; RNU48</td>
<td>hsa</td>
</tr>
<tr>
<td>46203</td>
<td>SNORD49A</td>
<td>U49; U49A; RNU49</td>
<td>hsa</td>
</tr>
<tr>
<td>19004</td>
<td>SNORD4A</td>
<td>Z17A; RNU101A; mgh18S-121</td>
<td>hsa</td>
</tr>
<tr>
<td>19005</td>
<td>SNORD6</td>
<td>mgh28S-2412</td>
<td>hsa</td>
</tr>
<tr>
<td>145663</td>
<td>SNORD65</td>
<td>HBII-135</td>
<td>mmu</td>
</tr>
<tr>
<td>46197</td>
<td>SNORA66</td>
<td>HBII-142</td>
<td>hsa</td>
</tr>
<tr>
<td>145666</td>
<td>SNORD68</td>
<td>HBII-202</td>
<td>mmu</td>
</tr>
</tbody>
</table>

Negative controls

<table>
<thead>
<tr>
<th>Probe ID</th>
<th>Negative controls</th>
<th>Validated negative control in these organisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>14258</td>
<td>hsa_negative_control-1</td>
<td>hsa, mmu, rno</td>
</tr>
<tr>
<td>14259</td>
<td>hsa_negative_control-2</td>
<td>hsa</td>
</tr>
<tr>
<td>14260</td>
<td>hsa_negative_control-3</td>
<td>hsa, mmu, rno</td>
</tr>
<tr>
<td>14266</td>
<td>hsa_negative_control-4</td>
<td>hsa, mmu, rno</td>
</tr>
<tr>
<td>10901</td>
<td>hsa_negative_control-6</td>
<td>hsa, mmu, rno</td>
</tr>
<tr>
<td>10902</td>
<td>hsa_negative_control-7</td>
<td>hsa, mmu, rno</td>
</tr>
<tr>
<td>10903</td>
<td>hsa_negative_control-8</td>
<td>hsa, mmu, rno</td>
</tr>
</tbody>
</table>
Spike-in kit

<table>
<thead>
<tr>
<th>Probe</th>
<th>ID Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1100</td>
<td>spike_control_v2_1</td>
</tr>
<tr>
<td>13186</td>
<td>spike_control_v2_2</td>
</tr>
<tr>
<td>13367</td>
<td>spike_control_v2_3</td>
</tr>
<tr>
<td>13371</td>
<td>spike_control_v2_4</td>
</tr>
<tr>
<td>13388</td>
<td>spike_control_v2_5</td>
</tr>
<tr>
<td>13389</td>
<td>spike_control_v2_6</td>
</tr>
<tr>
<td>13393</td>
<td>spike_control_v2_7</td>
</tr>
<tr>
<td>13417</td>
<td>spike_control_v2_8</td>
</tr>
<tr>
<td>13421</td>
<td>spike_control_v2_9</td>
</tr>
<tr>
<td>13430</td>
<td>spike_control_v2_10</td>
</tr>
<tr>
<td>24127</td>
<td>spike_control_v2_11</td>
</tr>
<tr>
<td>24136</td>
<td>spike_control_v2_12</td>
</tr>
<tr>
<td>24163</td>
<td>spike_control_v2_13</td>
</tr>
<tr>
<td>24199</td>
<td>spike_control_v2_14</td>
</tr>
<tr>
<td>24217</td>
<td>spike_control_v2_15</td>
</tr>
<tr>
<td>24226</td>
<td>spike_control_v2_16</td>
</tr>
<tr>
<td>25557</td>
<td>spike_control_v2_17</td>
</tr>
<tr>
<td>25593</td>
<td>spike_control_v2_18</td>
</tr>
<tr>
<td>25611</td>
<td>spike_control_v2_19</td>
</tr>
<tr>
<td>25728</td>
<td>spike_control_v2_20</td>
</tr>
<tr>
<td>26160</td>
<td>spike_control_v2_21</td>
</tr>
<tr>
<td>27291</td>
<td>spike_control_v2_22</td>
</tr>
<tr>
<td>27318</td>
<td>spike_control_v2_23</td>
</tr>
<tr>
<td>27350</td>
<td>spike_control_v2_24</td>
</tr>
<tr>
<td>27676</td>
<td>spike_control_v2_25</td>
</tr>
<tr>
<td>27821</td>
<td>spike_control_v2_26</td>
</tr>
<tr>
<td>27833</td>
<td>spike_control_v2_27</td>
</tr>
<tr>
<td>27953</td>
<td>spike_control_v2_28</td>
</tr>
<tr>
<td>27968</td>
<td>spike_control_v2_29</td>
</tr>
<tr>
<td>28038</td>
<td>spike_control_v2_30</td>
</tr>
<tr>
<td>28098</td>
<td>spike_control_v2_31</td>
</tr>
<tr>
<td>28393</td>
<td>spike_control_v2_32</td>
</tr>
<tr>
<td>28444</td>
<td>spike_control_v2_33</td>
</tr>
<tr>
<td>28488</td>
<td>spike_control_v2_34</td>
</tr>
<tr>
<td>28568</td>
<td>spike_control_v2_35</td>
</tr>
<tr>
<td>28581</td>
<td>spike_control_v2_36</td>
</tr>
<tr>
<td>28684</td>
<td>spike_control_v2_37</td>
</tr>
<tr>
<td>28876</td>
<td>spike_control_v2_38</td>
</tr>
<tr>
<td>28929</td>
<td>spike_control_v2_39</td>
</tr>
<tr>
<td>29001</td>
<td>spike_control_v2_40</td>
</tr>
<tr>
<td>29056</td>
<td>spike_control_v2_41</td>
</tr>
<tr>
<td>29138</td>
<td>spike_control_v2_42</td>
</tr>
<tr>
<td>29146</td>
<td>spike_control_v2_43</td>
</tr>
<tr>
<td>29564</td>
<td>spike_control_v2_45</td>
</tr>
<tr>
<td>29837</td>
<td>spike_control_v2_46</td>
</tr>
<tr>
<td>30147</td>
<td>spike_control_v2_47</td>
</tr>
<tr>
<td>30207</td>
<td>spike_control_v2_48</td>
</tr>
<tr>
<td>30293</td>
<td>spike_control_v2_49</td>
</tr>
<tr>
<td>30747</td>
<td>spike_control_v2_50</td>
</tr>
<tr>
<td>30756</td>
<td>spike_control_v2_51</td>
</tr>
<tr>
<td>32812</td>
<td>spike_control_v2_52</td>
</tr>
</tbody>
</table>

See table legend on adjacent page.

The Spike-in miRNA kit v2 captureprobes and their probe ID’s. The different control capture probes were compared against the genomic sequence of hsa, mmu and rno, with the BLAST tools at www.ensembl.org.
Note

In the GAL-file, only capture probes relevant to the species in question are annotated with a name. Probes that do not have a name could be designed for another species, internal controls or obsolete probes no longer in use. Some of these may show signal although they are not annotated, but they should be ignored in the analysis.

Some capture probes have been optimized from previous versions of the miRCURY LNA™ Array. These will appear with a new probe ID on this array compared to earlier versions. For more details about comparisons to older versions of the arrays, please contact www.exiqon.com/contact.

Spike-in microRNA controls

The miRCURY LNA™ microRNA Array Spike-in kit v2 contains 52 different synthetic unlabeled microRNAs in different concentrations. The set can be spiked into an RNA sample prior to labeling and the synthetic Spike-in miRNA kit v2 will hybridize to corresponding capture probes on the miRCURY LNA™ microRNA Array. The Spike-in miRNA kit v2 has been designed and tested not to cross-react with endogenous microRNAs from human, mouse or rat, and is provided at concentrations compatible with endogenous microRNA expression levels. The Spike-in miRNA kit v2 is supplied with different concentrations of synthetic spike-in microRNAs aimed at spanning the whole intensity range of microRNAs in most tissue samples.

In addition it is recommended to use Spike-in miRNA kit (product # 208040), which can be purchased separately (please enquire). This kit contains 10 different synthetic unlabeled RNAs in different concentrations. By labeling the 10 spike-ins in a separate labeling reaction, the spike-ins can be used as a hybridization control.
miRCURY LNA™ microRNA Array layout

The array is located on a standard size slide as illustrated in the drawing below [25.4 mm by 76.2 mm or 1 in by 3 in]. The array carries the following specifications*:

- Outer dimensions: 17 mm wide by 52 mm long
- Coordinates of first spot on slide = 4,1 mm, 8 mm
- 12 sub-arrays in 4 replicates
- Spot size: 105 μm
- Distance between spots: 250 μm

Figure 1

To assist in orientation of the array and positioning of the image analysis grid, Hy3™ fluorescent labeled “landing lights” are present in all 4 corners plus one extra in lower right corner of the 48 sub-arrays, 240 total. The slides are compatible with all major brands of microarray scanners, that take glass slides of the above described specifications [1 x 3 inches, not Affymetrix and Illumina scanners].

*See special insert for miRCURY LNA™ microRNA Array, REV which is printed in a layout accommodating MAUI®/NimbleGen™ mixers and hybridization stations.
Storage

miRCURY LNA™ microRNA Arrays should be stored desiccated at room temperature and protected from light. When properly stored, arrays will remain hybridization competent for at least 12 months. The arrays are shipped in desiccated, re-sealable storage pouches that are ideal for this purpose. Both the storage pouches and slide storage boxes are manufactured from materials that minimize outgassing and effectively block exposure to foreign contaminants that can elevate background levels. When accessing arrays, remove only the arrays you plan to immediately use and return the remaining arrays to the pouch quickly, leaving the desiccant pack in place. If stored properly shelf life for the miRCURY LNA™ microRNA Array kit is 1 year.

Dissolve the miRCURY LNA™ Array Spike-in miRNA Kit v2s in 30 μL/vial (see important note page 18) of RNase free water (supplied) upon receipt. Vortex to thoroughly dissolve the lyophilized RNA, pulse briefly in a microfuge, and leave the suspension on ice for 30 min. to dissolve. Vortex and then spin to collect tube contents. Store the dissolved Spike-in microRNA at −20° C until use and avoid repeated cycles of freeze/thawing. You may wish to aliquot the dissolved spike-in microRNAs to avoid repeated freeze/thawing. For long-term storage, keep the vial at −80° C. If stored properly shelf life for the miRCURY LNA™ Array Spike-in miRNA kit v2s is 1 year. In solution the shelf life for the spike-in microRNAs is 3 months.
Related products

Exiqon offers a range of tools designed for microRNA isolation, expression analysis, localization and functional analysis.

Figure 2

miRCURY™ RNA Isolation Kits
Get high quality total RNA suitable for miRCURY LNA™ microRNA Array analysis in as little as 20 minutes. Protocols are available for a large number of sample types and organisms.

miRCURY LNA™ microRNA Power Labeling Kit
For fluorescent labeling of microRNAs from total RNA samples ready for array hybridization (product # 208030-A, 208031-A, 208032-A).

miRCURY LNA™ microRNA Array, ready-to-spot probe set
Ready-to-spot oligo for direct printing of arrays, or coupling in bead-based applications (product # 208310-A).

miRCURY LNA™ microRNA Array, Spike-in miRNA kit
Ten different synthetic unlabeled microRNAs in different concentrations. The spike-in microRNA kit will hybridize to corresponding capture probes on the miRCURY LNA™ microRNA Array (product # 208040).

miRCURY LNA™ microRNA Array, Spike-in miRNA kit v2
52 different synthetic unlabeled microRNAs in different concentrations. The microRNAs will hybridize capture probes on the miRCURY LNA™ microRNA Array (product # 208041).
miRCURY LNA™ microRNA Array, Hybridization buffer
5 mL hybridization buffer optimal for microRNA hybridization to the miRCURY LNA™ microRNA Arrays (product # 208022).

miRCURY LNA™ microRNA Array, Wash buffer kit
125 mL salt buffer and 15 mL detergent optimal for wash of miRCURY LNA™ microRNA Arrays. (product # 208021).

miRCURY LNA™ microRNA Detection
For in situ hybridization and northern blotting of all annotated microRNAs.

miRCURY LNA™ microRNA Inhibitors and Power Inhibitors
Unravel the function of microRNAs by microRNA inhibition. Sophisticated LNA™ design ensures potent inhibition of all microRNAs regardless of their GC content. Chemically modified, highly stable Power Inhibitors for unrivalled potency.

miRCURY LNA™ microRNA Inhibitor Library
For genome-wide high throughput screening of microRNA function.

miRCURY LNA™ Universal RT microRNA PCR
Exiqons microRNA qPCR system offers the best available combination of performance and ease-of-use on the microRNA real-time PCR market. The combination of a Universal RT reaction and LNA™-enhanced PCR primers results in unmatched sensitivity and specificity. The Ready-to-use microRNA PCR panels enable fast and easy microRNA expression profiling.
Protocol overview

miRCURY LNA™ microRNA Power Labeling Kit

<table>
<thead>
<tr>
<th>Step</th>
<th>Mix</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIP treatment</td>
<td>RNA sample, CIP buffer, Spike-In microRNA and CIP enzyme</td>
</tr>
<tr>
<td>Labeling reaction</td>
<td>CIP treated RNA sample, Labeling buffer, Hy3™ or Hy5™, DMSO, Enzyme</td>
</tr>
</tbody>
</table>

miRCURY LNA™ microRNA Array Kit

<table>
<thead>
<tr>
<th>Step</th>
<th>Mix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mix samples</td>
<td>Dual color mix: Hy3™ labeled sample, Hy5™ labeled sample, Hybridization buffer, Denature sample</td>
</tr>
<tr>
<td></td>
<td>Single color mix: Hy3™ labeled sample, Hybridization buffer, Denature sample</td>
</tr>
<tr>
<td>Hybridize</td>
<td>Hybridize at 56°C for 16 hours</td>
</tr>
<tr>
<td>Stringency wash</td>
<td>Wash 2 min. in buffer A at 56°C, Wash 2 min. in buffer B at 23°C, Wash 2 min. in buffer C at 23°C, Dry slides</td>
</tr>
<tr>
<td>Image acquisition</td>
<td>Scan slides [recommended scan at 10µm], Download relevant GAL files from www.exiqon.com/gal-downloads</td>
</tr>
</tbody>
</table>

Single or dual color

Arrays can either be run as dual color (Hy3™ vs Hy5™) or single color (Hy3™ only). A schematic overview of advantages and disadvantages as well as recommended data analysis method can be seen in this table:

<table>
<thead>
<tr>
<th>Advantages:</th>
<th>Disadvantages:</th>
<th>Data analysis:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lowess normalization reduces differences caused by experimental variation</td>
<td>With common reference: Can only be done on a limited project with known number of samples and requires double the amount of RNA.</td>
<td>Local background subtraction (or norm exp)</td>
</tr>
<tr>
<td>Lowess normalization reduces day to day variation</td>
<td>With universal reference: miRs expressed in samples but not in reference are measured inaccurately.</td>
<td>Lowess normalization</td>
</tr>
<tr>
<td>Ratio data are typically more robust than absolute signals</td>
<td>Hy5™ is sensitive to ozone and might pose problems especially in urban areas if counter measures have not been taken in the lab to ensure low ozone levels</td>
<td></td>
</tr>
<tr>
<td>Requires double the amount of RNA sample than single color</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Single* color

<table>
<thead>
<tr>
<th>Advantages:</th>
<th>Disadvantages:</th>
<th>Data analysis:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Enables comparison across experiments</td>
<td>• Requires extremely high lab standards and very reproducible handling of samples</td>
<td>• Local background subtraction (or norm exp)</td>
</tr>
<tr>
<td>• Ability to add more samples to an experiment later</td>
<td>• Experiments performed over a large time span are sensitive to minor lot to lot variations</td>
<td>• Quantile normalization</td>
</tr>
</tbody>
</table>

*Single color is only supported if the RNA is labeled using the miRCURY LNA™ microRNA Array Power labeling kit, and Exiqons buffers etc.

Experimental design
If running single color, each sample has to be labeled with Hy3™, and hybridized to individual arrays. If running dual color, it is recommended that each sample is labeled with Hy3™ and that the reference is labeled with Hy5™. As reference we recommend to use either a common reference or a universal reference.
Labeling Protocol
(product # 208030-A, 208031-A, 208032-A)

Before starting the experiment
Total RNA should be prepared using a method that preserves small RNA species. When using commercially available kits, please verify that the total RNA preparation contains small molecular weight RNAs. We recommend using the miRCURY™ RNA Isolation Kits for total RNA preparations. For labeling, we recommend that you use a miRCURY LNA™ microRNA Power Labeling Kit. Please visit www.exiqon.com to learn more about this product.

The amount of total RNA to be labeled for an array hybridization depends on the microRNA content of the cells or tissue being analyzed. Without prior knowledge of microRNA content in the sample, we would recommend to use between 250 ng and 1 μg of total RNA per labeling reaction.

Prior to performing the labeling, dissolve the fluorescent dye(s) by adding 29 μL of nuclease-free water to the tube with the labeling dye, followed by vortexing and a brief centrifugation to collect the content of the tube.

Important note:

When performing dual color hybridization with Hy3™ and Hy5™ labeled RNA, it is recommended to use Hy3™ and Hy5™ labels of the same lot number. Do not mix dyes of different lot numbers.
The miRCURY LNA™ microRNA Array, Power labeling kit (product # 208032-A) always contains dyes from the same lot#.

Dissolve the spike-in miRNAs in 30 μL of RNAse free water supplied upon receipt. Leave the suspension on ice for 30 minutes to dissolve. Vortex and then spin to collect tube contents. Store the dissolved Spike-in miRNA at –20° C until use and avoid repeated cycles of freeze/thawing. You may wish to aliquot the dissolved spike-in miRNAs to avoid repeated freeze/thawing. For long-term storage, keep the vial at – 80° C.
Important note:

If both the Spike-in miRNA kit v2 (supplied with the arrays) and the Spike-in miRNA kit (Product # 208040) are to be used in the labeling reaction, it is recommended to dissolve both tubes in 15μL RNase free water. Leave the suspensions on ice for 30 minutes to dissolve. Vortex and then spin to collect tube contents. Finally mix the two in one tube and store at ~20°C until use and avoid repeated cycles of freeze/thawing. You may wish to aliquot the dissolved spike-in miRNAs to avoid repeated freeze/thawing.

For the labeling reactions, 1μL of this joint spike-in mix is used instead of 1 μL Spike-in miRNA kit v2.
Protocol & Notes

Protocol

Step 1
Thaw all kit components
Place all kit components on ice and thaw for 15-20 min. Mix thoroughly by vortexing followed by brief centrifugation. Do not thaw or vortex the enzymes. Flick these tubes followed by brief centrifugation.

Step 2
Combine reagents according to Table 2. Mix on ice
Reagents should be combined in an RNase-free microcentrifuge tube and should be mixed by pipetting up and down to ensure that all reagents are mixed thoroughly.

Table 2

<table>
<thead>
<tr>
<th>Volume (μL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total RNA**</td>
</tr>
<tr>
<td>Spike-in miRNA kit v2</td>
</tr>
<tr>
<td>CIP buffer</td>
</tr>
<tr>
<td>CIP enzyme</td>
</tr>
</tbody>
</table>

** We recommend to use between 0.25 - 1 μg, depending on the miRNA content in the sample.
Mastermix preparation: In order to minimize variation between slides it is recommended to prepare master mixes for both the CIP reaction (Table 2) and the labeling reaction (Table 3).

Step 3
Incubate 30 min. at 37° C
Incubate 30 min. at 37° C, using a PCR cycler with heated lid.

Step 4
Incubate 5 min. at 95° C
Stop the enzyme reaction and denaturate the RNA by incubation at 95° C followed by snap cooling on ice.
Step 5
Incubate 2 min. on ice.

Step 6
Combine reagents listed in Table 3. Mix on ice

Step 7
Mix and centrifuge the reagents briefly

Step 8
Incubate at 16° C for 1 hour

Step 9
Incubate for 15 min. at 65° C

Add the reagents listed in Table 3 to the 4 μL CIP reaction from step 5.

<table>
<thead>
<tr>
<th>Table 3</th>
<th>Volume (μL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIP reaction from step 5</td>
<td>4</td>
</tr>
<tr>
<td>Labeling buffer</td>
<td>3</td>
</tr>
<tr>
<td>Fluorescent label (Hy3™ or Hy5™)</td>
<td>1.5</td>
</tr>
<tr>
<td>DMSO</td>
<td>2</td>
</tr>
<tr>
<td>Labeling enzyme</td>
<td>2</td>
</tr>
</tbody>
</table>

Mastermix preparation: In order to minimize variation between slides it is recommended to prepare master mixes for both the CIP reaction (Table 2) and the labeling reaction (Table 3).

Reagents should be mixed by gentle vortexing or by pipetting up and down to ensure that all reagents are mixed thoroughly.

Incubate for 1 hour at 16° C, using a PCR cycler with heated lid. Protect the reaction from light.

After stopping the labeling procedure, briefly spin the reaction and leave it at 4° C. The labeled sample is now ready for hybridization on the array. Hybridization should preferably occur within 1-2 h.
Hybridization Protocol

Hybridization and washing using Tecan HS Pro™ hybridization stations

Before starting the experiment
For labeling, we recommend that you use a miRCURY LNA™ microRNA Power Labeling Kit. Please visit www.exiqon.com to learn more about this product.

The amount of total RNA to be labeled for an array hybridization depends on the microRNA content of the cells or tissue being analyzed. Without prior knowledge of microRNA content in the sample, we would recommend to use between 250 ng and 1 μg of total RNA per labeling reaction.

Check the hybridization buffer for any precipitate. If necessary, warm the solution at 56º C and agitate to dissolve the precipitate completely.

Please refer to the instruction manual of your hybridization station for correct volume of buffers required to perform the hybridization.
The volumes in Table 1 applies to the hybridization of 4 slides in a Tecan HS400/HS4800 hybridization station.
Total handling time: 1 hour

Protocol

Step 1
Combine the labeled sample(s)

- If running a dual color experiment, the two samples from the Hy3™ and Hy5™ labeling reactions are combined on ice.
- If the experiment is single color, 12.5 μL RNAse free water is added to the labeling sample. Total volume should be 25 μL.

Step 2
Add 25 μL 2x Hybridization buffer

- Check for precipitation (see p. 12) in the hybridization buffer before adding 25 μL to the labeled sample(s).
- Mix by vortexing and spin briefly.

Step 3
Denature at 95°C for 2 min.

- During the incubation the target preparation should be protected from light.

Step 4
Incubate 2 min. on ice

- Leave on ice for at least 2 min. and up to 15 min.
- Briefly spin the reaction after ice incubation.

Step 5
Preparation of Tecan

- Set the program for the hybridization station: Temperature 56°C, Wash time: 30 sec., Soak time: 0 sec.

Table 1

<table>
<thead>
<tr>
<th>Recipes for preparation of 200 mL Wash buffers</th>
<th>Wash buffer A</th>
<th>Wash buffer B</th>
<th>Wash buffer C</th>
</tr>
</thead>
<tbody>
<tr>
<td>20x Salt buffer</td>
<td>20 mL</td>
<td>10 mL</td>
<td>2 mL</td>
</tr>
<tr>
<td>10% Detergent solution</td>
<td>4 mL</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Nuclease-free water</td>
<td>176 mL</td>
<td>190 mL</td>
<td>198 mL</td>
</tr>
</tbody>
</table>
Step 6
Load slides in the hybridization chambers and flush hyb chamber with 1x Hybridization buffer
The slide chamber in the hybridization station should be primed. Check the appropriate volume of the chamber in the suppliers manual and add 1x diluted Hybridization buffer. Dilute with water. (e.g. use 100 μL for a Tecan HS400/HS4800).

Step 7
Inject reaction mixture
Inject the 50 μL target preparation to the hybridization station. In order to flush injection inlet, it is recommended to inject 10μL 1x diluted Hybridization buffer after target injection.

Step 8
Incubate at 56° C for 16 h.
Set the program for the hybridization station to 56° C and 16 h. incubation. Agitation should be set to medium, if possible.

Step 9
Two runs of wash at 56° C for 1 min. using Wash buffer A
Set the program for the hybridization station: Temperature 56° C, Wash time: 1 min., Soak time: 1 min.

Step 10
Two runs of wash at 23° C for 1 min. using Wash buffer B
Set the program for the hybridization station: Temperature 23° C, Wash time: 1 min., Soak time: 1 min.

Step 11
Two runs of wash at 23° C for 1 min. using Wash buffer C
Set the program for the hybridization station: Temperature 23° C, Wash time: 1 min., Soak time: 1 min.

Step 12
Wash at 23° C for 30 sec. using Wash buffer C
Set the program for the hybridization station: Temperature 23° C, Wash time: 30 sec., Soak time: 0 sec.

Step 13
Dry slides
Set the program for the hybridization station: Slide drying for 5 min.
Hybridization and washing using an Agilent hybridization SureHyb chamber kit and gasket slide kit

We recommend using an automatic hybridization station like the Tecan HS Pro hybridization station for optimal quality [see procedure at page 12]. If a hybridization station is not available manual hybridization can be carried out according to the protocol in this section using an Agilent hybridization SureHyb chamber kit and gasket slide kit. Please contact www.exiqon.com/contact for an alternative protocol using cover slip.

We recommend that you use a miRCURY LNA™ microRNA Power labeling kit for labeling of your sample(s). Please visit www.exiqon.com to learn more about this product.

Additional required materials:
Hybridization Chamber Kit - SureHyb enabled, Agilent part # G2534A
Hybridization Gasket Slide Kit (5) - 1 microarray per slide format, Agilent part # G2534-60003
Hybridization oven with rotation (e.g. SciGene, # 400 or Agilent).
Ethanol 99%
Hybridization chamber user guide (G2534-90002)

Before starting the experiment, day 1
We recommend that you use a miRCURY LNA™ microRNA Power labeling kit for labeling of your sample(s). Please visit www.exiqon.com to learn more about this product.

Check the hybridization buffer for any precipitate. If necessary, warm the solution at 56° C and agitate to dissolve the precipitate completely.
Before starting the experiment, day 2

Glass staining jar/dish and Wash buffer A should be placed at 56° C before starting the experiments at day 2.

If one or two miRCURY LNA™ microarrays are processed together in an experiment, the miRCURY LNA™ microarrays could be washed in a 50 mL screw-top tube (e.g. Falcon) by gently inverting the tube.

If three or more miRCURY LNA™ microarrays are processed in an experiment the miRCURY LNA™ microarrays could be placed in a slide rack and washed in a glass staining jar/dish. Use appropriate volume of washing buffer to cover the slides and shake gently. The volumes in Table 2 below are required for a large glass staining dish (8 slides, Sigma-Aldrich product # S-S6016 or similar). The following protocol is for hybridization of miRCURY LNA™ microRNA Arrays using a Agilent Hybridization chamber - SureHyb.

An instructional video on how to perform the hybridization using SureHyb Chambers can be found here: www.exiqon.com/ls/Pages/man-hyb-high-res.htm

Table 2

The volumes in this table are required for glass staining jars of 200 mL.

<table>
<thead>
<tr>
<th>Recipes for preparation of Wash buffers</th>
<th>Wash buffer A</th>
<th>Wash buffer B</th>
<th>Wash buffer C</th>
</tr>
</thead>
<tbody>
<tr>
<td>20x Salt buffer</td>
<td>60 mL</td>
<td>20 mL</td>
<td>2 mL</td>
</tr>
<tr>
<td>10% Detergent solution</td>
<td>12 mL</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nuclease-free water</td>
<td>528 mL</td>
<td>380 mL</td>
<td>198 mL</td>
</tr>
</tbody>
</table>
Protocol

Step 1 Prepare the labeled sample(s)
Adjust the volumes of the labeled sample to 200 μL by adding nuclease free water to the labeled sample(s) (kept on ice). If running a dual color experiment, combine the two samples from the Hy3™ and Hy5™ labeling reactions before adjusting the volume.

Step 2 Add 200 μL 2x hybridization buffer
If there is precipitation in the Hybridization buffer, then warm the solution at 56° C and agitate to dissolve. Add 200 μL to the labeled sample(s). Mix by vortexing and spin briefly.

Step 3 Denature at 95° C for 2 min.
During the incubation the target preparation should be protected from light.

Step 4 Incubate 2 min. on ice
Leave on ice for at least 2 min. and up to 15 min. Briefly spin the reaction after ice incubation.

Step 5 Add 400 μL to reservoir
Add 400 μL of the target sample mixture to the reservoir of backing gasket slides. Place the slide on top of the the backing gasket slides with the array side facing the target samples.

Step 6 Incubate at 56° C for 16 h.
Clamp the array/backing slide sandwich into the SureHyb hybridization chambers and make sure all bubbles move freely. Incubate at 56° C for 16 h. in a hybridization oven with rotation (e.g. SciGene, #400).

Step 7 Place Wash buffer A at 56° C overnight
Pre-warm the glass staining jar/dish and Wash buffer A by placing them at 56° C.
<table>
<thead>
<tr>
<th>Step 8</th>
<th>Disassemble hybridization chamber</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 9</td>
<td>Collect slides in Wash buffer A</td>
</tr>
<tr>
<td>Step 10</td>
<td>Wash at 56° C for 2 min. using Wash buffer A</td>
</tr>
<tr>
<td>Step 11</td>
<td>Wash briefly at room temperature in Wash buffer B</td>
</tr>
<tr>
<td>Step 12</td>
<td>Wash for 2 min. at room temperature in Wash buffer B</td>
</tr>
<tr>
<td>Step 13</td>
<td>Wash for 2 min. at room temperature in Wash buffer C</td>
</tr>
<tr>
<td>Step 14</td>
<td>Wash briefly in 99% Ethanol</td>
</tr>
</tbody>
</table>

Step 9
- Collect slides in Wash buffer A: Slides are placed in a submerged slide rack in a new jar with Wash buffer A at room temperature until all slides are disassembled. Make sure the slides are kept fully submerged during washing steps, and don’t let the slides dry in between steps.

Step 10
- Wash at 56° C for 2 min. using Wash buffer A: Immerse the slides in the prewarmed Wash buffer A and wash slides by plunging gently for 2 min.

Step 11
- Wash briefly at room temperature in Wash buffer B: The slide is washed briefly (one plunge) in Wash buffer B (at RT) to avoid transfer of detergent to the next wash step.

Step 12
- Wash for 2 min. at room temperature in Wash buffer B: The slide is washed at room temperature by plunging gently for 2 min. in a new glass staining jar/dish/Falcon tube in Wash buffer B.

Step 13
- Wash for 2 min. at room temperature in Wash buffer C: The slide is washed at room temperature by plunging gently for 2 min. in a new glass staining jar/dish/Falcon tube in Wash buffer C. Remove very slowly from the buffer in order to let the buffer run off.

Step 14
- Wash briefly in 99% Ethanol: Transfer the slide rack to a new staining dish with 99% Ethanol at room temperature. Wash the slides very briefly by plunging the rack gently up and down in the ethanol for a few seconds.
Hybridization and washing using MAUI® 4-Bay or 12-Bay hybridization stations*

This Protocol provides information for the use of Exiqon miRCURY LNA™ Arrays with the MAUI® Hybridization System using a MAUI® SC Mixer.

The MAUI® Hybridization System is comprised of two main components, the disposable MAUI® Mixer hybridization chambers and MAUI® instrument that powers the mixing bladders in the Mixer and maintains a constant incubation temperature. The MAUI® Mixer adheres to the microarray slide via an adhesive gasket forming a uniform, low volume, sealed hybridization chamber. Once attached, the Mixer-slide is clamped into one of the heated slide bays in the base unit, where hybridization takes place. For details about using the MAUI® Hybridization System please see the User’s Guide that come with the MAUI® Hybridization System or is available from BioMicro Systems. This Protocol provides detailed information about performing hybridization of labeled RNA samples on Exiqon miRCURY LNA™ Arrays using the MAUI® Hybridization System. For details about preparing the samples and performing the RNA labeling reactions please see the Instruction Manual for the miRCURY LNA™ Power Labeling Kit available from Exiqon’s website. At www.exiqon.com/ls/Flash/MAUI-guide/guide.html a video with injection instructions can be found.

*See special insert if using miRCURY LNA™ microRNA Array, REV and NimleGen™ HX1 mixers.
Additional required materials:
RNA samples (labeled with miRCURY LNA™ Power Labeling Kit)
MAUI® SC-mixers
MAUI® Humidity tray
MAUI® A/D jig
MAUI® Gasket brayer
Positive Displacement Pipette (optional, but highly recommended)
Wide pipette tips [see filling video at www.exiqon.com]
7 Rectangular Staining Dishes, 250 mL, w/slide washing racks
[e.g. Wheaton # 900200 /VWR# 25461-003].
Heating block set to 56° C.
Oven set to 56° C.

Before starting the experiment, day 1
We recommend that you use a miRCURY LNA™ microRNA Power Labeling Kit for labeling of your sample[s]. Please visit www.exiqon.com to learn more about this product.

Check the hybridization buffer for any precipitate. If necessary, warm the solution at 56° C and agitate to dissolve the precipitate completely prepare the wash buffers and leave min. 500 mL Wash Buffer A in an oven at 56° C over night. Leave 2 Rectangular Staining Dishes in the oven at 56° C as well.

Table 2

The volumes in this table are required for glass staining jars of 200 mL.

<table>
<thead>
<tr>
<th>Recipes for preparation of Wash buffers</th>
<th>Wash buffer A</th>
<th>Wash buffer B</th>
<th>Wash buffer C</th>
</tr>
</thead>
<tbody>
<tr>
<td>20x Salt buffer</td>
<td>60 mL</td>
<td>20 mL</td>
<td>2 mL</td>
</tr>
<tr>
<td>10% Detergent solution</td>
<td>12 mL</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nuclease-free water</td>
<td>528 mL</td>
<td>380 mL</td>
<td>198 mL</td>
</tr>
</tbody>
</table>
Step 1
Attach the MAUI® SC-mixer to the miRCURY LNA™ Array

For details on how to assemble the mixer and the array slide please see the MAUI® User’s Guide. Briefly:

• Remove the miRCURY LNA™ Array from the slide box and pre-heat it to 56°C by putting it on a heating block at 56°C for 5 min.
• Take out the SC-mixer from the packaging and remove the protective liner
• Insert the pre-heated array slide in the A/D jig with the barcode facing up and into the jig.
• Align the SC-mixer with the array slide in the A/D jig with the tab-end of the mixer facing away from the barcode on the slide. Carefully adhere the SC-mixer to the slide.
• Remove the mixer-slide assembly from the A/D jig and place the assembly with the mixer side up on the heating block at 56°C.
• Use the MAUI® Gasket brayer and moderate pressure to ensure good mixer to slide adhesion.
• Leave the mixer-slide assembly with the mixer side upon the heating block at 56°C. The sample must be loaded onto the 56°C-heated slide within 30 min of assembly.

Step 2
Prepare the labeled sample[s]

If running a dual color experiment, the two samples from the Hy3™ and Hy5™ labeling reactions are combined on ice. If the experiment is single color, 12.5 μL RNase free water is added to the labeled sample. Total volume should be 25 μL.
Step 3
Add 25 μL 2X Hybridization buffer to the labeled sample(s). Mix by vortexing and spin briefly. Final volume 50 μL.

Step 4
Denature at 95° C for 2 min. During the incubation the target preparation should be protected from light.

Step 5
Cool 2 min. on ice Leave on ice for at least 2 min. and up to 15 min. Briefly spin the reaction after ice incubation. Heat the sample to 56° C for 2 min. prior to loading into the slide-mixer assembly.

Step 6
Load the sample into the pre-heated SC-mixer-slide assembly Briefly spin the pre-heated sample prior to opening the tube. Aspirate 45 μL of sample into the pipette by pipetting up and down a few times (avoid bubbles).
Step 6 (Continued)
Load the sample into the pre-heated SC-mixer-slide assembly.

- Insert the pipette tip into the fill port in the tab-end of the SC-mixer and carefully inject the sample into the chamber at a moderate speed until sample emerges from the vent port (if sample is injected too slowly, a bubble might form). The actual volume of the SC-mixer varies slightly from batch to batch, so do not be alarmed should some of the sample bubble up from the vent port.
- Keep the plunger depressed and remove the pipette tip from the fill port. Any excess sample from the fill and vent ports are wiped clean with a tissue.
- Using forceps, place adhesive port seals directly over both ports. Use a finger on each port seal and press down firmly on both seals simultaneously to seal the ports.

Step 7
Incubate at 56° C for 16 h.
Place the loaded slide-mixer assembly in one of the bays of a MAUI® mixer, close the lid and incubate at 56° C for 16 h with mixing mode B.

Step 8
Preparation of washing procedure
In preparation of next day’s washing procedure pre-heat min. 500 mL Wash Buffer A at 56° C overnight. Leave 2 Rectangular Staining Dishes in the oven at 56° C as well. Make sure the MAUI® A/D jig will fit in one of the Staining Dishes or find an alternative container, e.g. 1 mL pipette tip box lid.

Step 9
Prepare wash buffers
At room temperature prepare the following washing solutions, each in a separate staining dish. Add sufficient liquid to completely cover the slides when they are placed in a washing rack in the staining dish: Wash A, B and C buffer according to table 2. Ethanol, 99%.
Step 10
Disassemble A/D jig

Perform the following operations at 56° C by working in the door opening of an oven:

A. Place the A/D jig in the heated staining dish and add sufficient pre-heated Wash Buffer A to cover the A/D jig.
B. To the other pre-heated staining dish add sufficient Wash Buffer A to completely cover the slides when placed in the washing rack.
C. Remove the slide-mixer assembly from the MAUI® unit and quickly insert it into the submerged A/D jig to avoid cooling of the slide. Hold the A/D jig firmly, grasp the top of the mixer and slowly peel the mixer off the slide. Discard the mixer.

Step 11
Wash for 2 min. at 56° C in Wash buffer A

D. Quickly transfer the slide to the rack in the next staining dish with Wash Buffer A at 56° C. Wash the slide for 2 min at 56° C by gentle plunging of the slide rack.
E. Transfer the slide to the rack in Wash Buffer B
F. Repeat steps C to F for each slide in the MAUI® Hybridization Station, collecting the slides submerged in Wash Buffer B at room temperature.

Step 12
Wash for 2 min. at room temperature in Wash buffer B

When all slides have been collected in Wash Buffer B, wash the slides for additional 2 minutes by plunging the rack gently up and down in the buffer at room temperature. Make sure the slides are kept fully submerged during washing steps, and don’t let the slides dry between steps.

Step 13
Wash for 2 min. at room temperature in Wash buffer C

Transfer the slide rack to a new staining dish with Wash Buffer C at room temperature. Wash the slides for 2 minutes by plunging the rack gently up and down in the buffer. Remove very slowly from the buffer in order to let the buffer run off.
Step 14
Wash briefly in 99% Ethanol
Transfer the slide rack to a new staining dish with 99% Ethanol at room temperature. Wash the slides very briefly by plunging the rack gently up and down in the ethanol for a few seconds.

Step 15
Dry the slide(s)
Dry the slides by centrifugation for 5 minutes at 1000 rpm. At this stage the fluorophores on the slides are very susceptible to degradation by ozone in atmospheric air. Keep ozone-induced photobleaching to a minimum by working in an ozone free lab or keeping the slides under a controlled atmosphere. Scan slides immediately after drying.
Recommendations for Experimental Set-up and Data Handling

As mentioned earlier (page 15), it is possible to hybridize one sample (i.e. single color) or two samples (i.e. dual color) to one array. Since microarray expression profiling without appropriate standards cannot be used for absolute quantification, expression levels of a microRNA in a sample can only be determined in comparison to other samples. In single color experiments, each sample is hybridized to a separate array; the comparison must then occur between arrays.

So far there are no established or thoroughly tested control or housekeeping small ncRNAs or microRNAs that can be used as common factors for normalization. The only options for single-color experiments are the use of the characteristic signal distributions, assuming that the similarity between the samples is high enough to allow normalization, or the use of synthetic spiked-in microRNAs. A set of spiked-in control microRNAs could also be an option, but again, it has to be considered that the number of spots used is limited and may thus introduce bias.

A way to enable optimal normalization across arrays is to use dual-color arrays with a common reference sample or a universal reference on all arrays in the study. Once intra-slide normalization has taken place, the log2 ratios between sample and reference for each microRNA can be calculated allowing the immediate direct comparison of all log2 ratios from all slides. The fact that all microRNA signals are expressed as a ratio to a reference, which should be the same on each slide, in essence removes technical variations from the comparison.

For help on designing array experiments, an overview can be downloaded from www.exiqon.com: Guidelines_for_setting_up_microRNA_array_profiling_exp.pdf

Protocol

Step 1
Scanning

We are using an Agilent G2505B Microarray Scanner System. The scanning is normally performed with 10 μm. The sensitivity should be adjusted to 100% PMT. To avoid ozone bleaching, we scan the microarrays in an ozone-free environment (less than 2 ppb ozone). Before starting any analysis, confirm that the tiff image is in the correct orientation (two landing lights in lower right corner). Depending on the scanner, the image may need to be flipped from upper left to lower right.
Step 2
Spot evaluation and background subtraction

In general, we recommend using local background subtraction. We subtract the local median background signal from each spot using the Exiqon-tailored ImaGene data analysis software (see www.exiqon.com/mirna-array-software). When using more advanced background subtraction, ‘Normexp plus offset’ convinced us with satisfying results. We are not using Feature Extraction software (Agilent) on a routine level. However, we provide a short protocol for customers who like to use this software (www.exiqon.com/microrna-microarray-analysis-microrna-array).

Step 3
Normalization

When running a dual color experiment we recommend a lowess intra-slide normalization for the signal intensities of each channel as a minimum. This eliminates the dye- and label-specific variances. In addition, it is recommended to monitor inter-slide comparability based on the spike-ins and or signals derived from constantly expressed RNAs. If running single color experiments we recommend to normalize the data using the quantile normalization method, as we have found that this generates the most reliable data.

Both of these normalization methods are supported in the Nexus software, part of the Exiqon array data analysis supplied software package, for details see www.exiqon.com/mirna-array-software

miRCURY LNA™ microRNA Arrays contain several control capture probes (e.g. detecting U6 snRNA and snoRNAs) and the signal obtained from these probes could theoretically be used in normalization after confirming the constant expression of these small RNAs under the given experimental conditions. However, we believe that normalization based on these very few probes alone is not optimal. Therefore, we recommend using these control capture probes to monitor the analyzed samples for uniformity and not for normalization.
Step 3 (Continued) In theory, it is possible to use signals from a set of spike-in synthetic microRNAs (added to each labeling reaction and for which control capture probes exist) to perform normalization. However, apart from being something synthetic added to the samples, the use of spike-ins for normalization focuses on a small number of data points, which is a problem if the differences between the samples are very large or if something in the samples themselves affect the synthetic microRNAs during labeling or hybridization. Exiqon offers two different spike-in kits. The one supplied with the array (spike-in miRNA kit v2, 208041), contains 52 synthetic miRNAs and could in theory be used for normalization, although we recommend using all detection probes instead. The other (spike-in kit, 208040) only contains 10 different miRNAs and should not be used for normalization.

Step 4 Data analysis and visualization From each spot and each channel the median signal intensity obtained after image analysis should be measured and normalized (after either local background subtraction or normexp plus offset background subtraction). The difference of a normalized and an unnormalized dataset can be seen in the MA plots below. For each of the normalized four replica datasets, the ratio between the Hy3 and Hy5 channels is determined.

The way the actual comparison is performed depends on the experimental setup. For direct comparison, the log ratios can be used directly. For common /universal reference comparisons log2 differences between sample are compared indirectly between the slides by using the common reference as normalizer added up to obtain the difference between the samples. We recommend using the special tailored Exiqon-offered Nexus software (see www.exiqon.com/mirna-array-software), that calculates significant differentially expressed miRs across samples and visualizes this in heatmaps/cluster diagrams.
Step 4 (Continued)

Two color intra-slide MA-plots obtained before (left) and after (right) lowess intra-slide normalization. Colored spots represent spike-ins of different signal intensities.

Step 5
Data evaluation

We strongly advise users to evaluate the microRNA data for their cluster and family performance. MicroRNAs which cluster in close proximity are expected to react similarly in their expression pattern, due to common transcriptional activity. MicroRNA families can be interesting to analyze since they may react similarly due to their common target sequences or to understand how family members are tissue-specifically regulated. An analysis of how the data of families or clusters correlate can therefore provide relevant data in addition to the actual microRNA signal of initial interest. Additionally, a further analysis of potentially regulated mRNAs targets will be useful. A short list of useful software and databases can be found below.
Software and Databases

Exiqon offers a software package tailored to suit the needs of analysis of the miRCURY LNA™ microRNA Arrays. The easy to use software package includes ImaGene® 9 for image analysis and Nexus Expression™ 2 for array data analysis. Together with the Exiqon specific settings file and the Exiqon quick manual, a successful array analysis can be obtained with a few clicks. Brief descriptions of the two software tools are given below. Further information is available at www.exiqon.com/mirna-array-software.

ImaGene
The Exiqon-offered image analysis software ImaGene® 9 places a grid on top of the scanned array image, and identifies which probe is located in each spot. The software quantifies the signal intensity and the surrounding background. ImaGene® 9 can also be used for basic data normalization. ImaGene in our hands outperforms other software regarding precision in spot recognition and flagging.

Nexus Expression
Nexus Expression™ 2 is the miRCURY LNA™ microRNA Array supportive software for statistical analysis of array profiling data. Nexus Expression™ 2 is fully compatible with ImaGene® but also other common image analysis program output formats are supported. Nexus Expression™ 2 allows background subtraction, normalization and visualization of the array data. It can combine the replicated measures of each probe on the arrays into one output value per array and make statistical calculations of the differentially expressed data obtained by comparing the microRNA signal data of different array experiments. The active links of the probe-target information to miRBase allows the easy collection of further microRNA information as soon as it is needed. Additional information is found on the Exiqon website at www.exiqon.com/mirna-array-software.

Several other commercial and free software packages for microarray image and data analysis are also available. A selection of these is listed below. The list is not complete and a more appropriate solution may be available for certain projects. For a more comprehensive overview of software packages, it is advised to visit statweb at www.statsci.org/micrarra/index.html.
Links to other array software:

Image analysis:
Bzscan http://tagc.univ-mrs.fr/ComputationalBiology/bzscan/
ScanAlyze http://rana.lbl.gov/EisenSoftware.htm
Spotfinder http://www.tm4.org/spotfinder.html

Statistical analysis:
Carmaweb https://carmaweb.genome.tugraz.at/
DChip https://sites.google.com/site/dchipsoft/downloading-dchip-software
Midas http://www.tm4.org/midas.html
R/bioconductor /
limma...................... http://www.r-project.org/

Links to microRNA Software and Databases:

Annotation database:
MiRBase http://www.mirbase.org/
mRNA viewer http://cbio.mskcc.org/mirnaviewer/
miplant browser http://miplant.binf.ku.dk/
miRMaid http://140.mirmaid.org/

Promotors:
miPromotor http://people.binf.ku.dk/morten/services/miPromotor/

Production site:
ProMiR II http://cbio.snu.ac.kr/~ProMiR2
miPrecursor http://people.binf.ku.dk/morten/services/miPrecursor/

Annot. Target database:
TarBase http://diana.cslab.ece.ntua.gr/tarbase/

Predict. Target database:
miRDB http://mirdb.org/miRDB/
Tissue expression atlas:
microRNA.org........ http://www.microrna.org/microrna/getExprForm.do

Validated-predict.Target:
mirecords............. http://mirecords.biolead.org/

Target prediction:
Miranda http://www.microrna.org/microrna/home.do
TargetScan http://www.targetscan.org/
PicTar http://pictar.mdc-berlin.de/
PITA http://genie.weizmann.ac.il/pubs/mir07/mir07_prediction.html
DIANA MicroT......... http://diana.pcbi.upenn.edu/cgi-bin/micro_t.cgi/
NBmiRTar http://wotan.wistar.upenn.edu/NBmiRTar/
MicroInspector........ http://bioinfo.uni-plovdiv.bg/microinspector/
miTargetFinder http://people.binf.ku.dk/morten/services/miTargetFinder
MiRTP https://genome.tugraz.at/MiRTP/

Structure based prediction:
miRacle.................. http://miracle.igib.res.in/miracle/
RNAhybrid.............. http://bibiserv.techfak.uni-bielefeld.de/rnahybrid

SVM based prediction:
miRTarget2............ http://mirdb.org/miRDB/
miTarget http://cbit.snu.ac.kr/~miTarget/

Target prediction/DB:
microCosm http://www.ebi.ac.uk/enright-srv/microcosm/

Meta Target prediction:
miRGator http://genome.ewha.ac.kr/miRGator/
RNA Relation:
CrossLink http://www-ab.informatik.uni-tuebingen.de/software/rosslink/
GenMiR++ http://www.psi.toronto.edu/genmir/

RNA+ pathway Relation:
ncRNAppi http://ncrnappi.cs.nthu.edu.tw/

Meta DB+RNA+disease:
mirwalk http://www.ma.uni-heidelberg.de/apps/zmf/mirwalk/

mRNA/miRNA data fusion:
MMIA.................... http://129.79.233.81/~MMIA/index.html

Disease relation:
miR2Disease http://www.mir2disease.org/

miR sequence alignments:
MirAlign http://bioinfo.au.tsinghua.edu.cn/miralign/

miR structure alignments:
miRScan http://genes.mit.edu/mirscan/

ncRNA alignments:
ncRNA.org............... http://software.ncrna.org/

Secondary structure:
UNAFold http://dinamelt.bioinfo.rpi.edu/download.php
MFold http://mfold.bioinfo.rpi.edu/
Pfold http://www.daimi.au.dk/~combio/rnafold/
Sfold http://sfold.wadsworth.org/index.pl
RNAFold http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi

RNA family search:
Rfam http://rfam.sanger.ac.uk/
Metadatabase:
miRGen http://www.diana.pcbi.upenn.edu/miRGen.html

miRNA designer:
miRNASigner http://mirnainfo.com/miRNADesignOne.aspx

D. mel. target prediction:
D. mel. Targets http://www.russell.embl.de/miRNAs/

Viral miRNA targets:
Vita http://vita.mbc.nctu.edu.tw/

Plant miRNA:
Micro harvester http://www-ab.informatik.uni-tuebingen.de/
pssRNATarget http://bioinfo3.noble.org/miRU2/
pssRNAMiner http://bioinfo3.noble.org/pssRNAMiner/
PMRD http://bioinformatics.cau.edu.cn/PMRD/
miplant http://miplant.binf.ku.dk/
miRNA designer http://wmd3.weigelworld.org/cgi-bin/webapp.cgi
Tips and Trouble Shooting

Experimental procedure

Preparation of RNA sample
Total RNA should be prepared using a method that retains small RNA species. When using commercially available kits, please ensure that the total RNA preparation is guaranteed to contain microRNAs. We recommend using our miRCURY™ RNA Isolation Kits for total RNA purification. Procedures that include acidic phenol chloroform extraction are generally also recognized as methods that preserve small RNAs. However, we recommend a column purification step following the phenol:chloroform extraction to remove any trace of these chemicals, as they could potentially inhibit the labeling reaction. Our miRCURY™ RNA Isolation Kits can be used for this procedure.

The purified total RNA should be dissolved in RNAse-free water or TE buffer at a concentration of no more than 2 μg/μL. It is recommended to assess the integrity of the RNA isolated before proceeding with labeling. This may be performed either on the Agilent Bioanalyzer (RIN values should be above 7) or by denaturing gel electrophoresis. Degraded RNA is generally not suitable for labeling or for hybridization to microarrays. However, RNA extracted from FFPE samples does give good results on miRCURY LNA arrays. The miRCURY LNA™ microRNA Power Labeling Kit can be used for efficient labeling of both microRNA enriched and total RNA. However, microRNAs constitute only a small fraction (~0.01%) of the total RNA. Attempts to purify this small fraction can result in loss of microRNAs or co-purification of larger RNA species. For this reason, we recommend using total RNA for labeling and hybridization. The amount of total RNA to be labeled for an array hybridization depends on the microRNA content of the cells or tissue being analyzed. Without prior knowledge of the microRNA content we recommend using between 500 ng and 1 μg of total RNA per labeling reaction.
Black spots
Ghost spots can be avoided by removing unincorporated dye. We recommend that the labeled RNA is purified using miRCURY™ RNA Isolation Kit or an exclusion column like Roche mini Quick Spin™ OLIGO columns or BioRad Micro Bio-Spin columns. Alternatively, perform the ethanol precipitation shown below.
- Mix the Hy3™ and Hy5™ labeling reactions before precipitation.
- Add 2.5μL RNase free Sodium acetate (3M, pH5.5) to the 25μL labeling reaction and 75μL 99.9% ethanol.
- Incubate the sample at -20° C for 30 minutes.
- Centrifuge 30 minutes at max speed in a cooled centrifuge.
- Remove supernatant and wash with 80% precoolied ethanol, by centrifuging 5 min at max speed in a cooled centrifuge.
- Remove supernatant and if necessary speedvac for a few minutes to remove remainder of ethanol.
- Dissolve in a mixture of 4μL DMSO, 15μL water and 6μL labeling buffer.

Solid particles
If you are concerned about introducing microscopic solid particles onto your array, then filter the sample through a Millipore 0.22 Ultrafree-MC Centrifugal Filter (product # UFC30GV0S): Wet the filter with 20 μL Nuclease-free water, spin 1 min. at 12,000 rpm and remove water. Add the target preparation and repeat the centrifugation. The flow-through contains the labeled sample(s).

Flushing the hybridization chamber
In order not to lose any target when using automated hybridization stations, it is recommended that you inject a volume smaller than the total volume of the hybridization chamber. The mixing mechanism of the hybridization station will ensure that the injected sample will be distributed equally across the entire array. To ensure that the composition of the hybridization buffer is the same after mixing it is recommended to flush the hybridization chamber with 1X hybridization buffer immediately prior to sample injection.
Dry slides
If you are doing manual hybridization and have more than 2 slides in your experiment you can dry the slides in a centrifuge by placing the slides in a slide rack on a swinging plate tray (1,000 rpm for 5 minutes). Alternatively, place your slides back to back in a screw-top tube and spin at 1,000 rpm for 5 minutes in a centrifuge.

No signals
Check that the Hy3™ labeled “landing lights” are visible. They are located in all 4 corners plus one extra in the lower right corner of the 48 sub-arrays, 240 total. If they are visible, please check that signals from the spike-in controls used in the labeling can be seen. If not, the labeling procedure probably has failed. If the spike-in controls can be seen, please check that your total RNA sample is of good quality by gel electrophoresis and optical density analysis. If the RNA quality is good, then try to increase the amount of RNA used in the labeling.
If signals in the Hy5™ channel are unexpectedly low, it could be due to high ozone levels in the air. Ozone has a bleaching effect on the Hy5™. Exiqon recommends to perform labeling reaction, slide handling and scanning in an ozone free environment.

High signals
Due to high binding affinity of the LNA™-enriched miRCURY™ capture probes, it is of utmost importance to use high stringency experimental settings, i.e. using the miRCURY LNA™ microRNA Array hybridization buffer and an overnight hybridization temperature of 56°C. Furthermore, use of ½-1 μg total RNA will in most cases result in optimal array signal intensities.

High background
Using a manual hybridization procedure with cover slip may produce high background around the margins of the coverslip. This is usually caused by evaporation of the hybridization solution. To avoid uneven distribution of the hybridization solution, it is important to position the slide horizontally. To increase the humidity, we recommend using a water bath.
Concentration and purification of the labeling reaction

We recommend that you follow the standard instruction manual for the labeling reaction, which will yield 50 μL (if running dual color). To minimize the number of handling steps through which the concentration of microRNAs may be compromised, we recommend loading 45 μL of the sample into the MAUI® SC mixer without a concentration/purification step; However if high fluorescent background is repeatedly observed, you may purify the labeling reactions to remove unincorporated dyes. For purification and/or concentration of the sample we recommend miRCURY™ RNA Isolation Kits, alternatively either ethanol precipitation or the RNeasy Mini Kit into the MAUI® SC mixer chamber.

Due to the bleaching effect of ozone on Hy5™ it is important to finish the concentration of the labeling reaction in the shortest amount of time possible.

Ethanol precipitation:
The combined labeling reaction can be concentrated by either ethanol precipitation as shown below, or as described in Tip 1:

- Add 1/10 vol RNase free sodium acetate (3M, PH 5.5) to the 25 μl labeling reaction + 3 vol 100% ethanol
- Incubate the sample at –20° C for 20 minutes
- Centrifuge 20 minutes at > 12000g at 4° C
- Remove supernatant and wash the pellet with 200 μl 80% precooled ethanol (–20° C)
- Centrifuge 5 minutes at > 12000g at 4° C
- Remove supernatant and let the pellet dry for 5 minutes
- Dissolve in a mixture of 20 μl: 3.2 μl DMSO, 12 μl H2O and 4.8 μl labeling buffer

miRCURY™ RNA Isolation Kits
- Please refer to the miRCURY™ RNA Isolation Kit manual for an RNA concentration protocol.
Spike-in miRNA kit v2 signal distribution

Figure 3 below shows the distribution of the 52 spike-in microRNAs spiked into 0.25μg universal reference RNA (Ambion, AM6000). The concentration of the various spike-in microRNAs are optimized such that the signal intensities of these spike-in microRNAs are in the dynamic range of naturally expressed microRNAs in most tissues.

Figure 3

![Scatter plot of two hybridizations with spike-in miRNA kit v2 added. One μL of the Spike-in microRNA kit v2 was spiked into each sample of 0.25 μg total RNA from a mix of human tissues and labeled with Hy3™. Labeling was performed using the miRCURY LNA™ microRNA Power Labeling Kit. Hybridization was performed using the Tecan HS4800™ Pro hybridization station.](image-url)
Use of Spike-in microRNAs

Scanner settings
The 10 spike-in control capture probes (Product # 208040) are located on the diagonal of each subgrid, each in a total of 48 replicas. When scanning the images, some of the spike-in capture probes can be used to determine appropriate scanner settings. Spike_control_j and spike_control_i should appear saturated or close to saturation. They are marked in red in the figure below. Spike_control_d and spike_control_h should give quite high signal but not be saturated. They are marked in pink in the figure below. If spike-in mix was added in equal amounts to both RNA samples, the signal from the spike-in capture probes should be similar in both channels after scanning. First find a laser power setting that gives the expected signal range and then adjust PMT settings so that both channels give similar signal in the spike-in capture probes.
The landing lights (annotated as Hy3™ in the gal-file, probe ID 13138) should not be used for finding the proper scanner settings as these spots contain dye spotted directly on the arrays. The intensity of these spots may vary from batch to batch of slides. These spots are only included for gal-file orientation, and their corresponding data points should be removed prior to normalization of the dataset.

Figure 4

*Figure 4. The location of spike-in capture probes in each subgrid on miRCURY LNA™ Arrays. The green spots are the Hy3 landing lights. The red spots are spike_control_i and spike_control_j that should have high signal close to saturation. The pink spots are spike_control_d and spike_control_h that should be well below saturation but have significant signal. The other spike-in capture probes are marked in blue. Some of these may give signal below detection limit, as they are present in very small amounts in the spike-in mix.

More information on spike-in signal position is available in figure 5 on next page.*
Spike-in kit miRNA (Product # 208040) microRNA signal distribution

Figure 5 below shows the distribution of the 10 spike-in microRNAs spiked into 1 μg of total RNA from human lung samples. The concentration of the various spike-in microRNAs are optimized so the signal intensities of these spike-in microRNAs are in the dynamic range of naturally expressed microRNAs in most tissues.

Figure 5

The position of signals from the spike-in microRNA set compared to signals from microRNAs will depend upon the microRNA expression level in the sample.

Figure 5. Scatter plot of a self-self hybridization with spike-in mix. One μL of the Spike-in miRNA kit was spiked into a sample of 1 μg total RNA from human lung labeled with Hy3™. Another 1 μL of spike-in microRNAs were spiked into 1 μg RNA from human lung and labeled with Hy5™. Labeling was performed using the miRCURY LNA™ microRNA Power Labeling Kit. Hybridization was performed using the Tecan HS4800™ Pro hybridization station.
Criteria for successful array hybridization using spike-in microRNAs (product # 208040)

The array contains specific capture probes for 10 Spike-in miRNAs. The Spike-in miRNAs cover the full signal range (High range; spike-in d, h, i and j, medium range; spike-in c, e and g; low range; a, b and f). Each spike-in miRNA has 48 replicates of capture probes on the array distributed from top to bottom.

• If the variation between replicates of each of the medium and high range spike-in controls exceed 20-25%, it could be an indication of insufficient agitation of the sample.
• Inter- as well as intra correlations between all spike-in miRNAs are normally within 0.950 and 0.999 (R2).

At www.exiqon.com an Excel 2007 template is available for QC evaluation of slides (requires that slides are analyzed using ImaGene software)
References

- miRBase, http://www.mirbase.org

- www.exiqon.com/array
Outside North America
Exiqon A/S · Skelstedet 16
DK-2950 Vedbaek · Denmark
Phone +45 45 660 888
Fax +45 45 661 888

North America
Exiqon Inc. · 14 F Gill Street
Woburn, MA 01801 · United States
Phone +1 781 376 4150
Fax +1 781 376 4152
Toll free (US) +1 888 miRCURY

www.exiqon.com/contact
www.exiqon.com