High-resolution whole mount in situ hybridization using 3’-DIG labeled miRCURY™ probes

Protocol prepared by Dr. Erno Wienholds and Dr. Wigard Kloosterman, the Plasterk Group, Hubrecht Laboratory, Utrecht, The Netherlands

Fixation and storage of Zebrafish and Mouse embryos
• Remove chorions by pronase treatment (for embryos older than 18 somites) or manually (for earlier stages). We only do manual dechorionation on all stages.
• Fix embryos in 4% paraformaldehyde* [PFA] in PBS overnight at 4°C.
• Transfer embryos into 100% Methanol [MeOH], store them at -20°C (2h to several months).

In situ hybridization, day 1
• Rehydration: Transfer embryos into small baskets and rehydrate by successive incubations in:
 75% MeOH - 25% PBS for 5 min
 50% MeOH - 50% PBS for 5 min
 25% MeOH - 75% PBS for 5 min
 100% PBST (PBS/Tween-20 0.1%) 4 x 5 min
• Digest with Proteinase K [10 μg/ml].
 blastula and gastrula: 30 seconds
 early somitogenesis: 1 min
 late somitogenesis (14 to 22 somites): 5 min
 24h embryos: 15 min
 36h/48h embryos: 30 min
• Refix in 4% PFA-PBS, 20 min.
• Wash in PBST, 5 x 5 min.
• Preabsorb the anti-DIG antibody [Boehringer] in a 1:1000 dilution in PBST-sheep serum 2%-BSA (2mg/mL) for several hours at RT with a batch of previously fixed embryos. Use about 500 embryos for 10 mL of antibody.
• Prepare the Prehybridization and Hybridization mix:
 Prehybridization and Hybridization mix (HM):
 Formamide 50-65%
 5 x SSC
 Tween-20 0.1%
 Citric acid to pH 6.0 (460 μL of 1M stock for 50 mL)
 Heparin 50 μg/mL
 tRNA 500 μg/mL
Note: Add tRNA and Heparin to the prehybridation and hybridization mix only [not the wash solutions]. Vary the formamide concentration according to the desired hybridization stringency.
• Prehybridize embryos in 800 μL of hybridization mix, 2 to 5 hrs at a hyb. temperature which is approx. 20-22°C below the calculated melting temperature [Tm] of the miRCURY™ probe.
Label 100 pmol of miRCURY™ probe (LNA probe) for miRNA detection using the DIG Oligonucleotide 3'-End Labeling Kit from Roche Applied Science (cat # 3 353 575) according to the manufacturer’s instructions with the following modifications: Use 200 U of terminal transferase (0.5 μl) for each end-labeling reaction and incubate the reaction mixture for 30 min at 37 °C. Place on ice and stop the reaction by adding 5 μl of 0.1 M EDTA (pH 8.0). Remove the unincorporated label from the 3'-DIG labeled miRCURY™ probe in a volume of 25 μL using a MicroSpin G-25 column (Amersham Biosciences cat# 27-5325-01) according to the manufacturer’s instructions.

Note: It is important to clean-up the labeled probe before use, since the unincorporated label may result in unspecific background staining in *in situ* hybridization.

- Remove prehybridization mix, discard, and replace with 200 μL of hybridization mix containing 1-2 μL of the MicroSpin G-25-purified 3'-DIG labeled miRCURY™ probe.
- Adjust the temperature of the waterbath so that the *in situ* hybridization is carried out at a temperature which is ca. 20-22°C below the calculated melting temperature (Tm) of the miRCURY™ probe and hybridize overnight.

In situ hybridization, day 2

Washes:

- 100% HM at the same temperature as above for hybridization (approx 20-22°C below the Tm of the miRCURY™ probe), very brief wash
- 75% HM/25% 2 x SSC at hybridization temp. 15 min
- 50% HM/50% 2 x SSC at hybridization temp. 15 min
- 25% HM/75% 2 x SSC at hybridization temp. 15 min
- 2 x SSC at hybridization temp. 15 min
- 0.2 x SSC, at hybridization temp. 2 x 30 min
- 75% 0.2 (or 0.05) x SSC/25% PBST at RT 10 min
- 50% 0.2 (or 0.05) x SSC/50% PBST at RT 10 min
- 25% 0.2 (or 0.05) x SSC/75% PBST at RT 10 min
- PBST at RT, 10 min
- PBST/2% sheep serum/2mg/ml BSA at RT, several hrs

Incubation with anti-DIG antiserum

Incubate in antibody solution overnight with agitation at +4°C.

Anti-DIG antibody solution

Pre-adsorbed anti-DIG, 1:5000 dilution (final concentration) in PBST

- 2% sheep serum
- 2mg/mL BSA

Zebrafish in situ hybridization, day 3

Washes

- Remove antiserum, discard, and then wash extensively:
- PBST at RT, very brief wash
- PBST at RT, 6 x 15 min
- Staining buffer [100 mM Tris HCl pH9.5, 50 mM MgCl₂, 100 mM NaCl, 0.1% Tween 20], at RT 3 x 5 min
- Staining:
- Incubate embryos in staining solution at RT and monitor with a dissecting microscope.
Mouse in situ hybridization, day 3

Washes:
• Remove antiserum, discard, and then wash extensively:
 • PBST at RT, very brief wash
 • PBST at RT, 5 x 1 hour
 • PBST at +4 °C, 2 days by exchanging the PBST buffer at every 2 hours
Staining buffer (100 mM Tris HCl pH9.5, 50 mM MgCl₂, 100 mM NaCl, 0.1% Tween 20), 3 x 5 min

• Staining blue
 Incubate embryos in staining solution at RT and monitor with a dissecting microscope.
 NBT 50 mg/mL - 225 μL
 BCIP 50 mg/mL - 175 μL
 Staining buffer - 50 mL
 (NBT stock: 50 mg Nitro Blue Tetrazolium in 0.7 mL of Dimethyl-formamide anhydride + 0.3 ml H2O. BCIP stock: 50 mg of 5-Bromo 4-Chloro-3-Indolyl Phosphate in 1mL anhydrous Dimethyl-formamide).

• Stop the reaction by removing the staining solution and washing the embryos in stop solution
 PBS pH5.5
 EDTA 1mM
• Store the embryos in stop solution at +4°C in the dark.

Mounting
• For observation using a dissecting microscope, mount embryos directly in stop solution and methylcellulose.
• For observation using a compound microscope, mount embryos in 100% glycerol.
• For embryos at early development stage (up to 18h), dehydrate in 100% methanol, clear for a few minutes in methylsaly-cilate, and mount in Permount.
• (What we mostly do) Wash embryos 3x 5 min in PBST. Dehydrate by successive incubations in:
 75% PBS - 25% MeOH for 5 min
 50% PBS - 50% MeOH for 5 min
 25% PBS - 75% MeOH for 5 min
 100% MeOH for 5 min
 100% MeOH for 5 min
 Murray’s (benzylalcohol:benzylbenzoate 1:2) for 5 min
 Murray’s (benzylalcohol:benzylbenzoate 1:2), store at 4°C

Reagents and chemicals
PFA: paraformaldehyde (Sigma)
10 x PBS
Tween-20 (Sigma P1379)
PBST: PBS containing 0.1 % Tween-20
MeOH: methanol
Proteinase K (Boehringer 1000144)
Anti-DIG antibody - alkaline phosphatase Fab fragment (Boehringer 1 093 274)
BSA fraction V protease free (Sigma A-3294)
Formamide (deionized, high purity grade)
20 x SSC
Heparin at 5 mg/mL (Sigma H3393)
RNase free tRNA (Sigma R7876, 50 mg/mL resuspended in H₂O and extensively extracted several times in Phenol/CHCl₃ to remove protein)
Citric acid 1M
Normal Sheep serum (Jackson ImmunResearch 013-000-121)
Tris HCl pH9.5 1M
MgCl₂ 1M
NaCl 5M
NBT 50 mg/mL (made from powder, Sigma N6876)
BCIP 50 mg/mL (made from powder, Sigma B8503)
PBS pH5.5
EDTA 0.5M
Glycerol 100%
Methylsalicylate (Sigma M6752)
Permount (Fisher SP15-100)

*Please note: For optimal fixation it may be critical to use fresh formaldehyde solutions. Fresh 4% solutions can be made from 16%, methanol free, formaldehyde or from solid paraformaldehyde (4% w/v).

For preparation of buffers please refer to:

This protocol is adapted from:

Please refer to:

DIG: DIG is licensed from Roche Diagnostics GmbH.
‘This protocol has been developed by a third party and not by Exiqon A/S or group companies ("EXIQON").
Thus, EXIQON cannot and will not warrant, represent or in any other way guarantee that the protocol and its content comply with your needs or expectations. EXIQON excludes all liability for any illegality arising from error, omission or inaccuracy in the protocol and takes no responsibility for the protocol or otherwise.
To the extent permitted by law, EXIQON excludes all liability in contract, tort (including negligence), breach of statutory duty or otherwise for any costs, losses, claims, damages, expenses or proceedings (including special, incidental or consequential loss or damage, loss of profits and wasted management time) incurred or suffered by you arising directly or indirectly in connection with the protocol and its content, including any loss, damage or expense arising from, but not limited to, any defect, error, imperfection, fault, mistake or inaccuracy with the protocol and its content. Any dispute relating to the protocol involving EXIQON shall be governed by Danish law.’