A microRNA signature in urinary exosomes for diagnosis of prostate cancer

Thorarinn Blondal¹, Anne I. Rasmussen¹, Anni R. Thomsen¹, Michael Borre², Jacob Fredsøe³, Ditte Andreasen¹, James Catto⁴, Torben Falck Ørntoft³, Karina D. Sørensen³ and Peter Mouritzen¹.

¹ Exiqon A/S, Vedbaek, Denmark, Depts of ²Urology and ³Molecular Medicine, Aarhus University Hospital, Denmark, ⁴Department of Oncology, The Medical School, Sheffield, UK

Presented at the AACR conference, April 2016
Introduction

Improved diagnostic tests for prostate cancer are needed

• Current practice: antibody based detection of circulating prostate specific antigen (PSA) in blood
• High rate of false positives and negatives
• Diagnosis requires invasive FNA (Fine-Needle Aspiration) biopsies

A non-invasive test with improved specificity is urgently needed

MicroRNAs as non-invasive biomarkers

• MicroRNAs are stable in a range of biofluids
• Involved in many diseases, including roles as oncogenes and tumor suppressors in cancer
• Used as diagnosis, prognosis, treatment response and safety biomarkers

microRNAs are excellent non-invasive biomarkers for a range of diseases

Exosomes stabilize and transfer microRNAs between cells

• Exosomes are nanovesicles 40 - 140 nm in diameter
• Actively released by a wide range of cell types to the extracellular milieu under normal and pathological conditions
• Present in a wide range of biofluids
• Carry genetic information from the cell of origin, including microRNA

Figure 1.

Urinary exosomes: new liquid biopsies for cancer

• Exosomes from neoplastic cells carry potentially arrays of oncogenic molecules including proteins and microRNAs
• The unique exosomal microRNA signature may reveal the cell of origin and the condition of those cells

Promising non-invasive microRNA biomarkers for early detection of malignancy
Challenges and Solutions for analysis of microRNAs in Biofluids

Limited amount of microRNA
- Optimized exosome isolation kit to enhance microRNA signals from dilute biofluid samples
- Optimized RNA isolation kit for biofluids ensures high qPCR performance and reproducibility
- Highly sensitive qPCR detection system

MicroRNA are challenging targets
- Short (19-22 nt) microRNAs accurately detected using short, highly specific LNA™ qPCR primers
- Robust detection of all microRNAs regardless of GC content - enabled by LNA™
- Discrimination between highly similar microRNA family members - enabled by LNA™

Undesired components e.g. PCR Inhibitors
- RNA spike-ins to monitor RNA isolation efficiency and co-purification of inhibitors

Pre-analytical variables
- Optimal experimental design (biological replicates)
- Control sources of technical variation e.g. collection sites

Figure 2.

Methods

Technologies to enable microRNA biomarker analysis in liquid biopsies

<table>
<thead>
<tr>
<th>Sample</th>
<th>Exosome Isolation</th>
<th>RNA Isolation</th>
<th>microRNA quantification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 ml cell-free urine</td>
<td>miRCURY™ Exosome Isolation Kit - Cells, urine and CSF</td>
<td>miRCURY™ RNA Isolation Kit – Cell & Plant</td>
<td>miRCURY LNA™ Universal RT microRNA PCR</td>
</tr>
</tbody>
</table>

Figure 3.

Exiqon has developed technologies to fulfil these key requirements:
- Methods suitable for clinical liquid biopsies [serum, plasma, urine, CSF etc.] collected using standard protocols
- Exosome precipitation using a rapid method (< 1 hour), requiring only low speed centrifugation
- Optimized sample preparation to minimize carryover of inhibitory compounds in biofluids
- Procedures for rigorous QC of liquid biopsy samples
- Highly sensitive detection system to handle the very low level of RNA found in biofluids
- Highly specific detection method to discriminate between closely related microRNA family members
- Detection method optimized for detection of short microRNA sequences
miRCURY™ Exosome Isolation Kit

Exosome isolation enables detection of more microRNAs in urine

Exosome isolation enables a larger starting volume of biofluid to be used, increasing signals.

Vesicles of the correct size are recovered in the exosome pellet

Nanosight measurements demonstrate that vesicles of a size range compatible with exosomes are enriched from urine in the pellet.

Figure 4.

Rigorous QC of liquid biopsies

qPCR-based QC procedures optimized for biofluids

A range of RNA spike-ins are detected by LNA™ qPCR assays to monitor RNA isolation efficiency, inhibitors, and detect outlier samples.

Figure 5.
miRCURY LNA™ Universal RT microRNA PCR System

High sensitivity and linearity - Ideal for microRNA analysis in liquid biopsies

• Sensitive assays are crucial, due to the low RNA content of biofluids
• Exiqon’s miRCURY LNA™ microRNA PCR assays are wet-lab validated to have sensitivity and linearity over a wide range of RNA inputs, including biofluids
• Red arrow indicates improvement of microRNA detection from dilute biofluid samples e.g. urine when using the miRCURY™ Exosome Isolation Kit

Figure 7.

A robust system for accurate microRNA analysis - Validated on biofluids

• In the largest cross-platform comparison study ever (miRQC), Exiqon’s PCR system was the only microRNA analysis platform to combine both high sensitivity and specificity (Mestdagh et al., Nature Methods 11(8):809-15, 2014)
• We have used the miRCURY LNA™ Universal RT microRNA PCR System to analyze microRNAs in thousands of biofluid samples including serum, plasma and urine

Figure 8.
Results

Study overview - microRNA biomarker discovery

Urine sample collection and analysis:

Urine samples collected by hospitals in Denmark
- 3 ml fresh urine (without stabilizer) was centrifuged to remove cell debris
- Storage in cryotubes at -20 °C (short term) then -80 °C (long term)
- Exosome and RNA isolation followed by microRNA qPCR analysis, using the methods shown in Figure 3

Urine samples collected by hospitals in the UK
- Prostate massaged fresh urine (without stabilizers) was centrifuged to remove cell debris
- RNA isolation without exosome isolation followed by microRNA qPCR analysis, using the method shown in Figure 3

Genome wide microRNA profiling of cell-free urine samples:
- Healthy individuals (Benign Prostatic Hyperplasia) and patients with Prostate Cancer (Stage I-IV)
- A subset of relevant microRNAs were selected for subsequent discovery screening

Diagnostic microRNA signatures for prostate cancer in urine

- **Differentially regulated microRNAs** in urine from prostate cancer individuals were identified (Cohort 1, DK)
- **Signatures with diagnostic potential for prostate cancer** have been identified using different combinations of these microRNAs
- **Three-microRNA signature**: high Area Under the Curve (AUC) was validated in two independent cohorts – one using sample collection and isolation protocols identical to the discovery cohort (cohort 2, DK) and one prostate massaged cell free urine without exosome isolation (cohort 3, UK) (Figure 10a)
- The three microRNA signature shows high performance within the intended-use-population (cohort 2 sub-population, DK) (Figure 10b)
A new diagnostic test (non-invasive) for prostate cancer - intended use: men with intermediary PSA levels

Today’s practice - based on blood
PSA – indication for Prostate Cancer:
• Not specific for prostate cancer
• 70 % false positives
• 10-20 % false negatives
• Gray-zone: PSA 3-10 ng/mL, 75 % false positives

<table>
<thead>
<tr>
<th>PSA level</th>
<th>Test result</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 3 ng/mL</td>
<td>Negative</td>
</tr>
<tr>
<td>3 – 10 ng/mL (gray-zone)</td>
<td>Positive</td>
</tr>
<tr>
<td>> 10 ng/mL</td>
<td>Positive</td>
</tr>
</tbody>
</table>

Active surveillance

New test – based on urine
microRNA signature diagnostic for Prostate Cancer:
• Predict positive biopsy, 90 % accuracy
• Reduce number false positives to < 10 %
• Provide guidance for biopsy

TRUS directed biopsy
• Used for tumor grading
• 47 % misdiagnosis
• 30 % false negatives

Figure 10b.

Figure 11.
Conclusions

- **Requirements** for microRNA analysis in biofluids:
 - RT-qPCR system with high sensitivity and specificity
 - Rigorous sample QC and standardization
 - Enrichment of exosomes is preferred in dilute biofluids

- **Exosome isolation** enables detection of more microRNAs in dilute biofluids

- The **methods** developed for sample preparation and LNA™-enhanced microRNA qPCR analysis have been successfully applied in cell-free urine

- MicroRNAs in cell-free urine are promising **non-invasive biomarkers in prostate cancer diagnosis**

- A **three-microRNA signature** has been discovered

- The three-microRNA signature has been **validated in independent cohorts**

Acknowledgements: Nanosight data kindly provided by iNano (Dr. Ken Howard, Aarhus University).

Exiqon, LNA™, and miRCURY™ are registered trademarks of Exiqon A/S, Vedbaek, Denmark. Locked Nucleic Acids (LNA™) are covered by patents and patent applications owned by Exiqon A/S. SYBR® Green is a registered trademark of Invitrogen. Concerning miRCURY LNA™ Universal RT microRNA PCR: NOTICE TO PURCHASER: LIMITED LICENSE. Purchase of this product includes an immunity from suit under patents specified in the product insert to use only the amount purchased for the purchaser's own internal research. No other patent rights are conveyed expressly, by implication, or by estoppel. Further information on purchasing licenses may be obtained by contacting the Director of Licensing, Applied Biosystems, 850 Lincoln Centre Drive, Foster City, California 94404, USA. For life science research use only. Not for use in diagnostic procedures.